首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94047篇
  免费   9058篇
  国内免费   4934篇
电工技术   5302篇
技术理论   2篇
综合类   6870篇
化学工业   17170篇
金属工艺   3429篇
机械仪表   4199篇
建筑科学   8146篇
矿业工程   6855篇
能源动力   7092篇
轻工业   5728篇
水利工程   2081篇
石油天然气   21575篇
武器工业   588篇
无线电   3498篇
一般工业技术   6362篇
冶金工业   4115篇
原子能技术   1263篇
自动化技术   3764篇
  2024年   149篇
  2023年   1132篇
  2022年   2355篇
  2021年   3069篇
  2020年   3282篇
  2019年   2733篇
  2018年   2472篇
  2017年   2954篇
  2016年   3444篇
  2015年   3443篇
  2014年   5726篇
  2013年   5937篇
  2012年   7287篇
  2011年   7535篇
  2010年   5205篇
  2009年   5141篇
  2008年   4612篇
  2007年   5698篇
  2006年   5725篇
  2005年   4817篇
  2004年   4070篇
  2003年   3542篇
  2002年   3008篇
  2001年   2684篇
  2000年   2261篇
  1999年   1810篇
  1998年   1435篇
  1997年   1259篇
  1996年   1022篇
  1995年   896篇
  1994年   747篇
  1993年   515篇
  1992年   434篇
  1991年   365篇
  1990年   328篇
  1989年   267篇
  1988年   141篇
  1987年   91篇
  1986年   82篇
  1985年   66篇
  1984年   53篇
  1983年   29篇
  1982年   35篇
  1981年   69篇
  1980年   50篇
  1979年   11篇
  1976年   6篇
  1973年   6篇
  1959年   5篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Each year, thousands of patients die from antimicrobial‐resistant bacterial infections that fail to respond to conventional antibiotic treatment. Antimicrobial polymers are a promising new method of combating antibiotic‐resistant bacterial infections. We have previously reported the synthesis of a series of narrow‐spectrum peptidomimetic antimicrobial polyurethanes that are effective against Gram‐negative bacteria, such as Escherichia coli; however, these polymers are not effective against Gram‐positive bacteria, such as Staphylococcus aureus. With the aim of understanding the correlation between chemical structure and antibacterial activity, we have subsequently developed three structural variants of these antimicrobial polyurethanes using post‐polymerization modification with decanoic acid and oleic acid. Our results show that such modifications converted the narrow‐spectrum antibacterial activity of these polymers into broad‐spectrum activity against Gram‐positive species such as S. aureus, however, also increasing their toxicity to mammalian cells. Mechanistic studies of bacterial membrane disruption illustrate the differences in antibacterial action between the various polymers. The results demonstrate the challenge of balancing antimicrobial activity and mammalian cell compatibility in the design of antimicrobial polymer compositions. © 2019 Society of Chemical Industry  相似文献   
62.
A novel multigeneration plant that's using natural gas for power, hydrogen, ammonia, and hot water generation, is planned and analyzed, in the current paper. The suggested combined plant integrated with four sub-systems, which are the Brayton cycle, reheat Rankine cycle, the high-temperature steam electrolyzer for hydrogen production, and ammonia synthesis processes. Also, thermodynamic analysis and environmental impact assessment are conducted for the designed plant and sub-systems. Moreover, the sustainability index analysis of this proposed study is conducted. The effects of some important indicators on the performance and on the environmental impact of the modeled system and sub-processes are also studied. According to analyses results, it is noted that the energetic and exergetic efficiencies of the suggested system are 51.83% and 70.27%, respectively, and also the total CO2 emission rate is 11.4 kg/kWh for the integrated plant. Furthermore, the total irreversibility rate is computed as 40007.68 kW, and furthermore, the combustion chamber has a maximum irreversibility rate with 20,033 kW, among the proposed plant components.  相似文献   
63.
The Rh/Ce0·75Zr0·25O2–δ-ƞ-Al2O3/FeCrAl structured catalytic blocks of length 10, 20, and 60 mm were prepared and tested in the reactions of steam and autothermal reforming of n-hexadecane. It was found in a series of experiments on hexadecane steam reforming with the catalyst heating solely through the reactor wall that the complete conversion of hexadecane at a furnace temperature below 750 °C was not achieved even at GHSV = 10,000 h−1. Under these conditions, the formation of carbon on the catalyst surface was observed. At the reactor wall temperature of 800 °C, the complete conversion of hexadecane was achieved even in the 10 mm long catalytic block (GHSV = 60,000 h−1), accompanied by the formation of various intermediate light hydrocarbons. To achieve complete conversion of these intermediate compounds (mainly 1-alkenes), it is necessary to carry out the steam reforming reaction at GHSV = 10,000 h−1. At hexadecane autothermal reforming, heat is supplied to the reaction zone by exothermic oxidation reaction, which makes this process more efficient. In experiments with the use of additional external heat supply through the reactor wall, complete conversion of hexadecane occurred at GHSV = 120,000 h−1. To convert all by-products (mainly 1-alkenes) and achieve a nearly thermodynamic equilibrium distribution of the main reaction products (H2, CO, CO2), the reaction should be carried out at GHSV = 20,000 h−1. Without external heat supply, hexadecane conversion decreased, while the content of light hydrocarbons in the reaction products increased. An increase in the inlet amount of oxygen helps to compensate the heat losses in the reactor and to increase the efficiency of hexadecane autothermal reforming. The performed experiments allow better understanding of the processes which occur during the steam and autothermal reforming of diesel.  相似文献   
64.
This study proposes a data‐driven operational control framework using machine learning‐based predictive modeling with the aim of decreasing the energy consumption of a natural gas sweetening process. This multi‐stage framework is composed of the following steps: (a) a clustering algorithm based on Density‐Based Spatial Clustering of Applications with Noise methodology is implemented to characterize the sampling space of all possible states of the operation and to determine the operational modes of the gas sweetening unit, (b) the lowest steam consumption of each operational mode is selected as a reference for operational control of the gas sweetening process, and (c) a number of high‐accuracy regression models are developed using the Gradient Boosting Machines algorithm for predicting the controlled parameters and output variables. This framework presents an operational control strategy that provides actionable insights about the energy performance of the current operations of the unit and also suggests the potential of energy saving for gas treating plant operators. The ultimate goal is to leverage this data‐driven strategy in order to identify the achievable energy conservation opportunity in such plants. The dataset for this research study consists of 29 817 records that were sampled over the course of 3 years from a gas train in the South Pars Gas Complex. Furthermore, our offline analysis demonstrates that there is a potential of 8% energy saving, equivalent to 5 760 000 Nm3 of natural gas consumption reduction, which can be achieved by mapping the steam consumption states of the unit to the best energy performances predicted by the proposed framework.  相似文献   
65.
The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates. However, this pressure drop prediction is still not clearly determined when the upstream is in an intermittent flow or stratified flow, which is corresponding to a region of low FrG (gas phase Froude number) in the flow pattern map of wet gases. In this study, the wet gas pressure drop across a single-orifice plate was experimentally investigated in the low FrG region. By the experiment, the flow pattern transition in the downstream of single-orifice plates, as well as the effects of FrG and FrL (liquid phase Froude number) on ΦG (gas phase multiplier), were determined and compared when the upstream is in the flow pattern transition and the stratified flow region, respectively. Prediction performances were examined on the available pressure drop models. It was found that no model could be capable of jointly predicting the wet gas pressure drop in the low FrG region with an acceptable accuracy. With a new method of correlating FrG and FrL simultaneously, new correlations were proposed for the low FrG region. Among which the modified Chisholm model shows the best prediction accuracies, with the prediction deviations of ΦG being within 7% and 3% when the upstream is in flow pattern transition and stratified flow region, respectively.  相似文献   
66.
Effective distribution coefficients of 9 impurities in 1,2-diphenylethane have been calculated by directional crystallization under different ambient frozen temperature. The effect of varied zone size, temperature difference between the melt and ambient frozen environment, number of zone on purity of 1,2-diphenylethane have been also investigated during the process of zone refining. The results indicate that the product purity in the intermediate purified region with varied zone size is higher 0.04%-0.2% than that with constant zone size. The product purity increases with temperature difference between the melt and ambient frozen environment. The appropriate temperature difference is adopted 50℃. The product purity in the intermediate region of sample bar with 2 molten zones is higher 0.05%-0.43% than that with 1 molten zone. In addition, the change of enthalpy and entropy between impurities and 1,2-diphenylethane have been determined.  相似文献   
67.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
68.
《Ceramics International》2022,48(17):24454-24461
Enhancement of thermoelectric properties by virtue of decreased electrical resistance through grain boundary engineering is realised in this study. A robust strategy of optimisation of the transport properties by tuning the energy filtering effects at the interfaces by decreasing the interfacial electrical resistance is achieved in LaCoO3 (LCO). This is accomplished by the incorporation of multilayer graphene within the parent LCO matrix containing multi-scale nano/micro grains. The present work has attained a substantial increment in electrical conductivity from a value of 96 Scm-1 for bare LCO to ~5300 Scm-1 at 750 K by incorporating 0.08 wt% multilayer graphene in LCO. No significant change in thermal conductivity is observed due to the presence of multilayer graphene in LCO. A zT of 0.33 at 550 K for 0.08 wt% multi-layer graphene incorporated LCO composite is achieved which is the highest thermoelectric figure of merit value for undoped LCO reported until now.  相似文献   
69.
基于叠后地震波形指示反演在薄储层预测方面的优势,以及叠前弹性参数较叠后弹性参数信息更丰富、对储层的敏感性更高的特点,根据岩石物理资料,应用地震驱动+储层构型约束的高精度叠前随机反演方法,探寻定量表征优质薄页岩的技术,以期为深层页岩气地质甜点预测提供技术支撑。首先,基于道集波形相似性、AVO特征和空间距离的三变量优选方法提取结构相似的井数据作为空间估值样本,然后建立待判别道集初始模型;其次,以统计的弹性阻抗作为先验信息,应用“基于叠前道集特征指示的马尔科夫链-蒙特卡洛随机模拟算法”进行叠前地震波形指示反演,最终得到高精度的叠前弹性参数反演成果。实际应用表明,应用所提方法有效预测了龙一段一亚段1-2小层优质页岩厚度,基于特征参数的井震高频模拟精确模拟了龙一段一亚段1-2小层地质甜点参数,为页岩气勘探提供了技术支撑。  相似文献   
70.
中国的海相富有机质页岩经历了多期构造改造,其含气性具有明显的差异。页岩气在不同构造演化阶段的保存条件是揭示页岩气差异富集机理的关键科学问题之一,开展构造-热演化研究可以明确其热演化史和构造隆升-剥蚀过程,为其评价提供演化格架。研究以丁山地区下古生界页岩为对象,联合磷灰石裂变径迹、磷灰石(U-Th)/He和锆石(U-Th)/He等多个古温标反演热演化史,结合镜质体反射率重建的最高古地温剖面,对丁山地区燕山期以来的差异构造隆升过程和剥蚀量进行了恢复,并在此基础上结合流体包裹体分析对丁山地区龙马溪组页岩的压力演化过程进行了模拟;根据页岩在埋藏—抬升过程中的温、压演化特征,定量表征了不同抬升阶段页岩含气量的变化,建立了龙马溪组页岩"埋藏—生烃—抬升"的演化格架。分析表明,丁山地区在燕山期和喜马拉雅期经历了不同的构造隆升过程。燕山期表现为"早期快速隆升—晚期缓慢隆升"的分段隆升,具有自NW向SE递进隆升且隆升幅度逐渐增大的特征;喜马拉雅期表现为整体快速隆升。燕山期是丁山地区产生差异构造隆升的主要时期。受这种差异构造隆升-剥蚀作用的影响,龙马溪组页岩的降温、降压过程和页岩气的散失过程具有明显的差异。燕山期的差异构造隆升是造成丁山地区龙马溪组页岩含气性呈平面分带的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号